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The rapid advancement of live-cell imaging technologies has enabled biolo-
gists to generate high-dimensional data to follow biological movement at the
microscopic level. Yet, the “perceived” ease of use of modern microscopes has
led to challenges whereby sub-optimal data are commonly generated that can-
not support quantitative tracking and analysis as a result of various ill-advised
decisions made during image acquisition. Even optimally acquired images of-
ten require further optimization through digital processing before they can be
analyzed. In writing this article, we presume our target audience to be biologists
with a foundational understanding of digital image acquisition and processing,
who are seeking to understand the essential steps for particle/object tracking
experiments. It is with this targeted readership in mind that we review the basic
principles of image-processing techniques as well as analysis strategies com-
monly used for tracking experiments. We conclude this technical survey with
a discussion of how movement behavior can be mathematically modeled and
described. © 2019 by John Wiley & Sons, Inc.
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INTRODUCTION

Advances in microscopic imaging technol-
ogy, fluorescent reporting strategies, and com-
putational capabilities have dramatically ex-
panded biologists’ ability to measure dynamic
movements within and among living cells, as
well as the ability to extract biologically mean-
ingful information from them. However, the
complexity of these experiments can prove
demanding to many researchers. This unit pro-
vides practical guidance that should be con-
sidered when attempting to measure and char-
acterize molecular, organelle, and/or cellular
dynamic behavior. To date, many approaches
for particle and object tracking, with a wide va-
riety of capabilities, have been reported. This
unit focuses on the underlying principles, as
well as key examples from the literature, and

is designed to act as a guide for researchers
to formulate an optimal particle- or object-
tracking protocol.

The ability to accurately track and charac-
terize cell, organelle, and biomolecule move-
ment is critical across a wide swath of bio-
science disciplines, including cell biology,
developmental biology, biophysics, and many
others (Jin, Heller, Sharma, & Strano, 2009;
Keller, Schmidt, Wittbrodt, & Stelzer, 2008;
McDole et al., 2018; van der Schaar et al.,
2008). The accelerated development of high-
speed, automated imaging systems, coupled
with the development of genetically encoded
fluorescent probes (Dean & Palmer, 2014),
have greatly expanded the repertoire and
the scope with which biologists are able to
perform these important measurements. The
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Figure 1 The essential steps involved in target tracking. At each stage, informed decisions and/or assumptions

must be implemented to ensure the success of the next analytical step. This overview serves as a practical guide
to performing this analysis.
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advent of new imaging tools allow biological
structures previously beyond the reach of fluo-
rescence microscopy to be tracked — as in the
cases of particles that move too fast in three-
dimensional (3D) space, low molecular abun-
dance that leads to rapid loss of signal, molec-
ular complexes with multiple components that
need to be tracked together, light-sensitive cel-
lular processes that cannot withstand excessive
illumination, and even cell lineaging in com-
plex, developing embryos. Likewise, these in-
creasingly complex data sets pose progres-
sively more difficult challenges for accurately
tracking the targets of interest and describ-
ing the locomotive behavior in mathematical
terms.

We use the term “target” here to denote any
biological structure to be tracked. Through-
out this discussion, “particle” will refer to any
target that is smaller than the resolution limit
of a microscope. Conversely, “object” will re-
fer to targets that are larger. This distinction
is useful, as there are differing strategies for
each case. Regardless of the structures being
detected, a successful object-tracking analy-
sis involves the following steps, as outlined in
Figure 1. Every element in this multistep pro-
cess is crucial to the subsequent success of tar-
get tracking analysis and modeling. Informed
decisions and/or wise assumptions must be
made at every step to maximize the fidelity
and accuracy of the analytical approach. (i)
Careful consideration must be given to the
selection of fluorophores, image-acquisition
parameters, and the appropriate imaging
modality. (ii) The acquired images must be ap-
propriately processed to minimize the contri-
bution of noise and improve contrast. This will
then facilitate the success of (iii) feature ex-
traction by the software, leading to one of the
most important steps of this process: (iv) tar-
get recognition, or object segmentation, which
categorizes groups of pixels into discrete ob-
jects and identifies their relative positions over
time. (v) Appropriate target localization step
then must be chosen to ensure that the algo-
rithm tracks the biological appropriate refer-
ence points in the data set. Only with the suc-

cessful completion of this step can (vi) tar-
get tracking begin via positional linking. The
approaches involved in the tracking process
vary widely, and this is the step that perhaps
requires the most informed decisions and as-
sumptions to be made for accurate positional
linking of particles. Once the tracking pro-
cess is completed, (vii) motion analyses can
be performed on the numerical data to describe
the behavior of the movement through various
mathematical models.

A recent effort to evaluate various aspects
of target-tracking algorithms was carried out
as a competition (Chenouard et al., 2014). In
this study, 14 algorithms were submitted to
the competition and they were tested against
48 different situations. Chenouard et al. sub-
sequently conclude that no single algorithm
is optimal in tackling all the simulated situa-
tions. Since the biological microenvironments
in which target tracking is performed are even
more complicated, it is safe to assume that
there is no one method that will fit every exper-
iment. In practice, the various computationally
intensive algorithms require some understand-
ing of their fundamental principles before they
can be deployed appropriately. It is therefore
the goal of this practical guide to explain
the underlying concepts of object and particle
tracking to provide guidance for a more strate-
gic approach in addressing common biologi-
cal problems. We will provide an overview of
how various factors guide the decision-making
process and discuss the best practices at every
step. We will conclude by discussing several
mathematical models that describe movement
behavior. In addition, we have included a list,
summarized in Table 1, that defines the com-
monly used acronyms used in this guide to aid
the reader.

STRATEGIES FOR IMAGE
ACQUISITION

The first step of the object-tracking process
— image acquisition — can ultimately deter-
mine the outcome of all the subsequent stages
in object tracking. Ironically, it is also the
one step that frequently receives insufficient
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Table 1 Abbreviations Commonly Used in Particle and Object Tracking and Their Definitions
Terms and phrases Abbreviation/acronym
Signal-to-noise ratio SNR

Point-spread function PSF

Total internal reflection fluorescence TIRF

Single-particle tracking SPT

Laplacian of Gaussian LoG

Difference of Gaussian DoG

Center of mass COM

Local nearest neighbor LNN
Multiple-hypothesis tracking MHT

Linear assignment problem LAP

Fluorescence recovery after photobleaching FRAP

Fluorescence loss in photobleaching FLIP

Mean squared displacement MSD

Hidden Markov modeling HMM

Table 2 Online Resources Listing the Optical Characteristics of Available Fluorescent Proteins and Dyes

URL

Description

https://www.fpbase.org/

https://searchlight.semrock.com/

https://www.thermofisher.com/order/spectra-
viewer

https://www.micron.ox.ac.uk/software/
spekcheck/

Maintained and comprehensive fluorescent protein
database, with multiparameter searching and API

Spectrum viewer for many fluorescent proteins and dyes,
with overlay of filter set spectra, light sources, and
detector quantum efficiencies

Large spectral database of fluorescent dyes, some
fluorescent proteins, and overlays of custom excitation
and emission filters

Spectrum viewer with custom loadable fluorophore, light
source, filter, and detector profiles. Offers dye
optimization routine for a given microscope setup.

consideration during the planning phase (Lam-
bert & Waters, 2017). “Imaging for as long,
and as fast, as one could” is not always an
advisable strategy.

Selection of Fluorophores

Fluorophore selection is arguably the most
important factor that determines image ac-
quisition parameters. Every fluorophore has a
photobleaching rate, which describes the per-
manent loss of electrons from the productive
cycle of fluorescence emission due to pho-
tochemical change (Grimm et al., 2015; Ha
& Tinnefeld, 2012; Hoogenboom, van Dijk,
Hernando, van Hulst, & Garcia-Parajo, 2005).
Quantum yield describes the fraction of ab-
sorbed photons that a fluorophore re-emits as

Current Protocols in Cell Biology

fluorescence. Photobleaching rate and quan-
tum yield jointly describe a supremely impor-
tant factor — photon budget. By defining the
number of photons that a fluorophore can con-
tribute to the experiment, photon budget de-
termines almost every aspect of image acqui-
sition. It sets the upper limit of the acquisition
speed and the imaging duration. By extension,
it may also determine whether one can suc-
cessfully perform imaging in 3D or is limited
to the 2D plane. Likewise, it sets the lower limit
of molecular abundance one can practically
visualize and track on a microscope. A low
photon budget can also result in poor signal-
to-noise ratio (SNR) and/or exacerbate pho-
totoxicity, as dim fluorophores require higher
illumination power and/or exposure time to
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reach acceptable SNR. There is decidedly no
conceivable reason to choose a fluorophore
with poor photon budget, yet it is common
to see photon budget being compromised for
the convenience of keeping the existing flu-
orescent labels. Such misguided strategy ul-
timately levies a huge toll on the success of
every subsequent step listed in Figure 1. There
are now several powerful online resources that
survey the characteristics of available fluo-
rophores and their compatibility with a given
microscope setup, as shown in Table 2.

In addition, care should also be taken to
assess the degree to which a fluorophore may
alter the behavior of a target of interest. For
example, the introduction of a genetically en-
coded fusion tag may perturb the structure of
the protein to be imaged, potentially render-
ing it “nonfunctional” (Snapp, 2005). Even
if a target structure is preserved, the addi-
tion of a fluorophore may alter the dynamic
behavior simply due to the fact that target-
fluorophore complex is much larger than the
target alone. This may be the case particularly
with nanoparticle-based probes such as quan-
tum dots (Kaji, Tokeshi, & Baba, 2007), which
can greatly exceed the size/mass of the target
to which they are attached.

Setting the Imaging Parameters

Resolution vs. magnification

Contrary to common misconception, it is
not always necessary to pursue the highest
resolution for object tracking. Resolution is
a measurement of the smallest distance be-
tween two objects that can be separated by the
microscope; it is not a measurement of how
small an object the microscope can detect.
If the separation between objects is greater
than the diffraction limit, even if the size of
the objects is not, no enhanced resolution is
necessary. Many object-detection algorithms
can achieve higher positional accuracy than
what the microscope can resolve. Thus, it is
important to make the clear distinction be-
tween “accuracy” in object tracking and op-
tical “resolution.” In object tracking, accuracy
defines the uncertainty of pinpointing the ex-
act position of a target, which is dependent
on both the optical resolution of the micro-
scope and the overall brightness of the particle
(Thompson, Larson, & Webb, 2002).

Magnification is another parameter to be
considered. While increasing magnification
does not translate to higher resolution, the ef-
fects of magnification play an important role
in the accuracy of particle tracking (Carter,

Shubeita, & Gross, 2005). Magnification will
ultimately determine the effective pixel size
in a digital image. The appropriate distance
represented by an image pixel should be suf-
ficiently less than the resolution limit of the
microscope to prevent loss of otherwise avail-
able image detail. But excessive magnification
will create effective pixel sizes that are too
small, resulting in fewer photons being col-
lected per pixel. This will severely compro-
mise SNR. The expression below expresses
this relationship in terms of image brightness:

NA*

magnification’ )

Here, NA refers to the numerical aperture of
the imaging system and characterizes the an-
gle range over which an optical system gath-
ers light, and thus also determines the light
collection efficiency. As a general guideline,
magnification should be chosen such that the
point-spread function (PSF) of the microscope
will create a 3- to 5-pixel-diameter spot in an
image. The PSF is a vital descriptor of any
imaging system. It describes how a micro-
scope represents an infinitely small object (at
a given wavelength), and thus acts as a mea-
sure of the resolving power of the microscope
(Hecht, 2002).

image brightness (

Planar vs. volumetric imaging

Not all biological objects move in a 3D
space that would require 3D imaging. Vol-
umetric imaging decreases temporal resolu-
tion in most microscopes and increases the
likelihood of photodamage to the specimen.
Objects that are confined to the thin lamella
of a well-spread cell, for example, may not
require volumetric imaging. Such specimens
will benefit more from a simple wide-field
or total internal reflection fluorescence (TIRF)
microscope. In fact, 3D confocal microscopy
would be counterproductive, as precious pho-
tons will be unnecessarily rejected by the
confocal pinhole. If volumetric imaging is
required, then spatial and temporal resolu-
tion, as well as the gentleness of illumina-
tion of the microscope, will generally have
to be adjusted relative to 2D imaging. While
confocal microscopes are designed to per-
form z sectioning, it is important to keep in
mind that confocal voxels are not isotropic
in resolution. The axial resolution can be two
to three times larger than the lateral resolu-
tion (Schermelleh, Heintzmann, & Leonhardt,
2010). Spinning-disk confocal microscopes
can image 3D volumes at higher speed than
laser-scanning confocal microscopes, but at
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reduced axial resolution often due to pinhole
crosstalk (Egner, Andresen, & Hell, 2002).
Recent advances in imaging technologies
have provided life scientists with significantly
more choices in instrumentation that fit unique
experimental needs. In addition to the con-
ventional wide-field and TIRF systems, light-
sheet microscopes (Heddleston & Chew, 2016)
that employ either Gaussian beams (Huisken
& Stainier, 2009; Tomer, Khairy, & Keller,
2011) or Bessel beams (Chen et al., 2014) have
greatly improved temporal resolution in volu-
metric imaging, at a fraction of the photodam-
age. Volumetric frame rate can be further im-
proved using multifocal microscopes that can
capture the entire 3D volume simultaneously
with no time lag, a category of microscopes
specifically designed for high-speed 3D parti-
cle tracking (Abrahamsson et al., 2013). For
enhanced spatial resolution, several flavors of
structured illumination microscopes (SIMs),
such as the instant SIM (iSIM; York et al.,
2013) and high-speed SIM driven by a spatial
light modulator (Li et al., 2015; Shao, Kner,
Rego, & Gustafsson, 2011), have also vastly
increased the 3D acquisition speed with en-
hanced spatial resolution, albeit by compro-
mising the amount of illumination power per
time point. And in the case wherein extremely
high lateral resolution is required, the recent
development of MINFLUX imaging technol-
ogy can now deliver resolution in the single-
digit nanometer range (Balzarotti et al., 2017).

Striking the optimal balance

Tracking accuracy hinges on the preci-
sion of target detection and positional linking.
These two goals unfortunately do not always
work synergistically. Increasing temporal res-
olution (higher frame rate) will likely translate
into poorer SNR, thus jeopardizing the accu-
racy of object detection and segmentation. On
the other hand, increasing acquisition intervals
(e.g., to minimize photobleaching) will allot
more time for objects to wander away from
the position at the previous time point, thus
compromising trajectory construction. Since
many positional linking approaches are related
to the nearest-neighbor algorithm, it is cru-
cial that in single-particle tracking (SPT), the
ratio (p) between particle displacement and
the mean nearest-neighbor distance should be
p < 0.5 (Jagaman & Danuser, 2009). On the
other hand, for larger objects such as indi-
vidual cells, the frame rate should be set fast
enough so that cells migrate less than their av-
erage diameter from frame to frame (Zimmer
et al., 2006).
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IMAGE PROCESSING

Background vs. Noise

Once appropriate images have been ac-
quired, particle or object tracking becomes
a computational task. Digital images will al-
ways have impurities. These impurities can
be attributed to noise, blurring, or any other
unwanted signal. Genuine fluorescent signals
need to be isolated from the unwanted sig-
nal impurities. In this context, “background”
(Prewitt & Mendelsohn, 1966) can represent
any unwanted signal source, often manifest-
ing as out-of-focus light. “Noise,” on the other
hand, is a random corruption of any image due
to the inherent uncertainty of photon detection
(Pawley, 2010; Waters, 2013).

At this stage, it is also important to deter-
mine whether the targets of interest can be
classified as “particles” or “objects.” While
many techniques outlined in this section are
generally applicable, some are particular to the
nature of the target being detected. We can de-
fine a particle as a structure that is well repre-
sented by a single PSF of the imaging system.
In other words, a particle can be treated as a
point source of light because its size is less
than the resolving power of the imaging sys-
tem being employed. In most optical setups,
this corresponds to targets smaller than half
the wavelength of emitted light. An “object,”
on the other hand, is a target larger than the
resolving limit of the microscope being used
and can be defined by a connected set of pixels
within the image series.

Thresholding

Regardless of the nature of the target being
tracked, threshold application is the primary
means to separate it from the remainder of the
image. In its simplest implementation, a pixel
intensity value T is chosen, such that those
pixels with an intensity greater than 7 are
considered signals of interest and the rest are
ignored. Thresholding can be used to generate
binary images, or masks, such that pixel values
greater or less than T are assigned a value of 1
or 0, respectively. In this way, thresholding is a
way to create infinite contrast between signal
and the rest of the image. A key decision
should be made either to select a “global”
threshold value for all time points in a data set,
or to allow different threshold values at each
time point. In the absence of significant photo-
bleaching, with targets that display relatively
constant intensity, a global threshold may
be preferred. Special care should be taken,
however, when the targets to be tracked have
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Figure 2 Otsu’s thresholding method. (A) Fluorescence image of DAPI-stained U20S cells revealing nuclear
morphology, Cell Image Library accession code CIL:40499 (Uhlen et al., 2010). (B) The pixel intensity histogram
shows the relative distribution of pixel values. Using Otsu’s method, an optimal threshold is found that minimizes
the variances of both the background and the signals of interest, as denoted by the dashed line. (C) Using the Otsu
threshold value, a mask can be made such that above-threshold pixels are white, and the rest of the image is black.

Aaron et al.

6 of 34

widely different intensities across time points.
Although the effects of (and possible remedies
for) photobleaching have been discussed,
targets with widely variable intensity may
also occur due to biological reasons that are
difficult to control. For example, tracking
a dynamically forming multimeric protein
complex (Calebiro et al., 2013) or tracking
a motile cell expressing calcium sensor
(Denninger et al., 2014) may produce such an
effect. These complex situations necessitate
a varying threshold value over time. In either
case, a second key challenge in setting an
appropriate threshold level is avoiding user
bias. Therefore, automated thresholding is
generally the preferred approach.

Automatic thresholding techniques often
utilize information from an intensity his-
togram, which describes the distribution of
pixel values in an image. The histogram can
be characterized by its peaks, valleys, and
curvatures. Typical approaches smooth these
features until the histogram resembles a bi-
modal distribution; consequently, an appro-
priate threshold level can then be considered
the midpoint between these peaks. One widely
used algorithm is Otsu’s method (Otsu, 1979).
This technique searches for a threshold level
that minimizes the variance (or standard devia-
tion) between above- and below-threshold pix-
els. As an example, Otsu’s method is applied
to an image of U20S cells stained with DAPI
in Figure 2A. Figure 2B shows the correspond-
ing pixel intensity histogram with the optimal
threshold value indicated by the dashed line.
Figure 2C illustrates the results of threshold
application with above- and below-threshold
pixels shown in white and black, respectively,

revealing a representative mask of cell nuclei.
Such image masks at successive time points
can then be subjected to further processing,
and ultimately tracking analysis, as will be dis-
cussed later. However, despite its robustness,
Otsu’s method can fail when there is a large
difference between the number of above- and
below-threshold pixels.

Other methods use the concept of image
entropy and work by choosing a threshold
value that maximizes the entropy difference
between signals of interest and the rest of the
image (Pun, 1980). These approaches, too, can
fail, especially when the sub-threshold signal
is nonuniform. As a result, more advanced
thresholding methods may be necessary in
such cases but are outside the scope of this
discussion (Sezgin & Sankur, 2004).

However, even advanced threshold meth-
ods may fail in the presence of image im-
purities, such as noise and background. To
combat this, there are image processing tech-
niques that strive to recover the underlying sig-
nals of interest. Broadly speaking, these tech-
niques can be classified as denoising methods
and background-removal methods. These al-
gorithms can be used individually or in combi-
nation. Importantly, however, such processing
should not be used in lieu of optimizing the
experiment design considerations described
earlier.

Image Denoising

As discussed previously, SNR should be
maximized in any tracking experiment. How-
ever, other considerations may compromise
SNR, rendering it low enough to complicate
target detection via a simple threshold. It is
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Figure3 Comparison between denoising techniques. (A) An original image containing unwanted
noise. (B) A median filter is applied to (A), which denoises the image while preserving some edge
features. (C) A Gaussian filter smooths out noise more than the median filter but at the cost of
edge contrast. (D) The non-local means filter can smooth out noise while preserving edges.

important to note that no post-acquisition tech-
nique will completely negate the effects of
poor SNR from image acquisition. Neverthe-
less, various denoising techniques have been
developed to partly ameliorate this common
issue.

Denoising methods act to reduce the pixel-
to-pixel variability across the image. If the
targets to be tracked are large and/or bright,
smoothing will make segmentation more ef-
fective. However, as targets become smaller
and/or dimmer, greater care must be taken to
avoid removing them along with the unwanted
noise in the image.

Most common denoising strategies survey
the surrounding values in the neighborhood of
a given pixel. The three most widely used de-
noising methods are based on mean, median,
and Gaussian filters. The neighborhood oper-
ations determine the intensity of each pixel in
the resulting denoised image. In other words,
each pixel value is replaced by one that is more
similar to the values around it. For both mean
and median filters, the results will be optimal if
adjacent pixel values are largely similar in in-
tensity; however, usage of median filters tends
to guard better against highly variable local
pixel intensities and outperform mean or Gaus-
sian filters at preserving the sharp changes in
pixel values that usually denote the boundary
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of a particle or object. Gaussian filters assume
that bright objects should be brighter in the
center with gradual gradients moving outward
and thus are ideal for denoising of images con-
taining sub-diffraction sized particles.

Figure 3 illustrates the effects of various
denoising algorithms. In Figure 3A, an original
simulated image shows variously sized targets
with accompanying noise. Figure 3B and C
show the results after application of median
and Gaussian denoising procedures. Note that
while a median filter can better preserve the
overall object shape, Gaussian denoising tends
to provide smoother images at the expense of
edge contrast.

The methods discussed up to this point con-
sider only a localized grouping of pixels. A
fourth method, non-local means, approaches
denoising differently (Buades, Coll, & Morel,
2005). The non-local means strategy considers
multiple regions from the image. The method
works by first applying a Gaussian filter to
the image. Then, regions with similar inten-
sity are grouped together. The center pixel
values of these groups are averaged, and the
resulting values are used to replace the origi-
nal pixel intensities. As shown in Figure 3D,
non-local means can be a powerful method, as
it produces smooth objects while at the same
time preserving edge sharpness. However, this
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Figure 4 Background subtraction. (A) An object containing targets of interest with out-of-focus background
present; a surface rendering of the same data is shown in (D). (B) Gaussian blurring of the original image gives an
estimate of the background shown; surface rendering is shown in (E). Subtracting the background estimate from
the original image gives the results shown in (C) and (F).
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method runs the danger of removing small ob-
jects. The Gaussian filter size should be set
slightly larger than the targets to be detected.
However, for SPT, these techniques will tend
to remove small targets, which are often the
very targets of interest. In conclusion, denois-
ing can aid target detection in poor SNR im-
ages. However, any denoising algorithm will
come at a cost of poorer spatial and/or tempo-
ral resolution.

Removing Out-of-Focus Background
SNR is not the only factor that can com-
plicate target detection. Very often, unwanted
signal can originate from out-of-focus light,
which it may not be possible to remove at
the image acquisition stage. Light from dif-
ferent planes reduces the contrast between the
signals of interest and the remaining pixels.
While such background signal, in general, will
not be constant throughout an image, it is of-
ten necessary to assume that background is
less structured and/or dimmer than the targets
of interest. Many techniques approximate the
local background by performing a Gaussian-
filter-based blurring of the image, and subtract
this estimate from the observed image (Michel,
Steinmeyer, Falk, & Harms, 2007). However,
care must be taken when selecting the size
of the Gaussian filter. Large Gaussian sizes
will tend to preserve larger targets of interest
at the expense of poorer background removal.
In contrast, smaller Gaussian filter sizes will
improve background removal at the expense
of removing larger targets from the image. In
practice, users should optimize background re-
moval with this method by selecting a Gaus-

sian filter size that is slightly larger than the
largest target of interest. An analogous method
for background subtraction is the rolling ball
algorithm (Sternberg, 1983). In this implemen-
tation, a sliding local minimum filter is used to
estimate the background within sub-regions of
the image, which is then subtracted. However,
the same considerations need to be applied
when selecting the appropriate filter size.

Figure 4 illustrates a typical background-
subtraction protocol, with the original image
displayed in Figure 4A, and a 3D surface ren-
dering of the same image in Figure 4D. An
estimated background obtained using Gaus-
sian filter blurring is shown in Figure 4B, with
surface representation in Figure 4E. The re-
sult of subtracting the estimated background
from the original image is shown in Figure
4C and F. Note that background removal sub-
stantially increases the contrast between the
targets of interest and the remainder of the
image.

When considering background, however, it
is important to note that unwanted signal may
originate not only from out-of-focus planes,
but also from the target of interest. As dis-
cussed previously, any biological structure will
be “convolved” with the PSF of the optical sys-
tem used to image it. (Hecht, 2002). In prac-
tice, therefore, out-of-focus signal could also
originate from a target of interest. In this case,
the background subtraction methods described
above may be ineffective. This problem is es-
pecially pronounced in SPT. To effectively re-
move this unwanted signal, it is necessary to
“deconvolve,” or decouple, the original image
from the underlying PSF.

Current Protocols in Cell Biology



Figure5 Deconvolution methods. In (A), a simulated image is shown that is subjected to blurring and noise corrup-
tion in (B). (C) illustrates the results from Wiener deconvolution, while (D and E) show the results of deconvolution
via the Richardson-Lucy and Blind algorithms, respectively.

Deconvolution

Rather than relying on a user-defined Gaus-
sian filter or rolling ball filter size, deconvolu-
tion algorithms estimate the true in-focus flu-
orophore distribution by attempting to remove
the PSF-induced blurring from the acquired
image. Broadly speaking, these methods can
be divided into “inverse” and “iterative” algo-
rithms.

Inverse algorithms were the first to be in-
troduced and operate via a single calcula-
tion step to remove the effect of the under-
lying PSF on the measured image. A common
implementation of this type of technique is
called the Wiener filter (Gonzalez & Woods,
2002). However, without suitable modifica-
tions, inverse algorithms tend to amplify im-
age noise and create other unwanted artifacts.
Thus, many inverse deconvolution algorithms
employ the concept of “regularization.” This
process makes assumptions about the smooth-
ness of the structures in an image that act to
constrain the possible pixel values in the final
deconvolved image. It also will often assume
that pixel values cannot be negative (Takeda,
Farsiu, & Milanfar, 2008).

Iterative algorithms were introduced later
to improve upon inverse methods such as the
Wiener filter. In this case, the deconvolution
proceeds through cycles. At each step, the es-
timated deconvolved image is compared to the
previous estimate either until a set number of
iterations is completed, or until the current
and previous iterations are sufficiently similar.
A popular form of this type of deconvolution
is the Richardson-Lucy method (Lucy, 1974;
Richardson, 1972).

In both Wiener and Richardson-Lucy de-
convolution schemes, it is important to ob-
tain an accurate estimate of the PSF of the
imaging system being used. Zhang et al. ex-
plain how to approximate PSFs for multi-
ple common microscopes (Zhang, Zerubia, &
Olivo-Marin, 2007). However, more recently,
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“blind” deconvolution algorithms have been
introduced that do not have such a require-
ment. These methods work to estimate both
the final deconvolved image and the under-
lying PSF in tandem to create a suitable im-
age (Ayers & Dainty, 1988; Fish, Brinicombe,
Pike, & Walker, 1995).

An example of the results of each of these
deconvolution methods are shown in Figure 5.
In Figure 5A, a simulated image is shown that
is then blurred and subjected to noise corrup-
tion such as would be seen with a typical mi-
croscope (Fig. 5B). The images in Figure 5C
through E reflect the results of Wiener decon-
volution, Richardson-Lucy iterative deconvo-
lution, and blind deconvolution, respectively.

As can be seen, iterative algorithms may
tend to better recapitulate the original image
(Fig. 5A) than the Wiener method. However,
key to this result is specifying the correct num-
ber of iterations. Specifying too few will in-
sufficiently deblur the image. Specifying too
many, however, will tend to amplify noise and
ultimately reduce image quality. In addition,
Wiener deconvolution retains two important
advantages in that it is (i) computationally
simpler and (ii) a linear operator. In other
words, this method can generate deconvolved
images much faster, and more fundamentally,
will preserve the relative pixel intensity values
from the original image. This linearity may
be important when accurate image intensity
calculations are necessary. Further, as will be
discussed later, preserving intensity linearity
may also be important when considering tar-
get shape and localization measurements.

Successful background subtraction, denois-
ing, and deconvolution should usually enhance
the image quality sufficiently to bring out the
real fluorescent signals. Yet, despite the appli-
cation of these necessary steps, there remain
several issues that should be considered before
the final target can be appropriately segmented
for tracking. In particular, the intensities of the
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Figure 6 First-order derivative—based edge detection. (A) A blurry, circular target with indistinct boundaries. (B)
Taking the first-order derivative of this image indicates clear maxima and minima that can be used to demarcate
the extent of the object. (Intensity profiles for (A) and (B) are shown below in blue.) (C) The fluorescence image of
a cell can have edges that are difficult to delineate due to other features and fluctuations in intensity across the cell
body. (D) Application of a Sobel filter (based on a first derivative of the image), in combination with morphometric
operations, makes it possible to outline the cell boundary.
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biological targets are usually not homogenous.
Accordingly, their boundaries may be difficult
to define. In these instances, relying on the
absolute intensities may not be sufficient to
identify the targets. A more effective strategy
is to tease out the features of the targets based
on local intensity differences.

FEATURE DETECTION

In fluorescent images, structural “features”
can be thought of as discontinuities, or sharp
gradients of intensity from one pixel region to
the next. Therefore, an edge of an object is
a powerful feature to leverage for target de-
tection. In contrast to intensity thresholding,
edge-detection methods make use of the vari-
ation in pixel intensities — not the intensities
themselves. This can be useful when the ob-
jects of interest lack intensity uniformity or
when their edges are difficult to define.

Abrupt changes in intensity can be detected
by either first- or second-order derivatives of
intensities with respect to position within an
image. As illustrated in Figure 6, the power
of derivative quantification is that it can
reproducibly and mathematically establish the
target outline, even for an object with an in-
distinct boundary. An object with a relatively
ill-defined demarcation from the background
is shown in Figure 6A, with its intensity profile
shown below. Determining the “edge” of this
object can prove challenging using an inten-
sity threshold method. However, as shown in
Figure 6B, a first-order derivative detects the
“upswing” and “downswing” of the intensity
gradient of the blurry, circular target, with
clear maxima/minima (indicative of inflection

points) that act as an unbiased measure of the
extent of the particle. Some edge-detection
methods use first-order derivatives that scan
an image vertically and horizontally in
sequence, then take the positive integer value
of the derivatives to establish an outline for
the object. Accordingly, when edge-detection
methods such as a Sobel filter are applied, a
threshold is chosen to determine the minimum
gradient to keep (Park & Murphey, 2008; Ziou
& Tabbone, 1998). First-order derivative—
based edge detection using the Sobel filter is
further illustrated in Figure 6C and D, with a
fluorescence image of a single cell shown in
Figure 6C. Note that the “edge” of the cell in
this figure is difficult to reproducibly define via
simple thresholding, especially if we want to
include areas with relatively dim lamella and
filopodia. However, the result of a Sobel filter
application, in combination with morphome-
tric operators (to be discussed later), is shown
in Figure 6D, and indicates the cell boundary
that includes these dimmer structures.

Other edge-detection methods can make
use of the second spatial derivative of an im-
age, also called the “Laplacian.” Figure 7A
shows the same object illustrated in Figure 6A
and the corresponding second-order deriva-
tive in Figure 7B, with intensity profiles be-
low. Plotting the location of the zero-crossing
points of the image Laplacian can provide
an extremely sensitive measure of the object
boundary, shown in Figure 7C.

However, the use of first- and second-order
derivatives is also sensitive to pixel intensity
fluctuations due to noise. The Laplacian
approach, in particular, is generally used only
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Figure 7 Second-order derivative—based edge detection. (A) The same object with relatively
indistinct edges shown in Figure 6A. (B) The corresponding second-order derivative of (A), also
called the Laplacian. (C) The zero-crossing points of the second derivative can be used as a
particularly sensitive marker of the object boundary. (Intensity profiles for (A), (B), and (C) are
shown below in blue.) (D) A simulated image showing various targets of interest with relatively low
SNR. Application of the LoG detector algorithm with a Gaussian filter size of 1.5 pixels (E) and 5
pixels (F) indicates that care should be taken when selecting the appropriate filter size to minimize
the effects of noise while preserving smaller features.

after application of a denoising filter. In fact,
the most common second-order derivative
edge detectors are the Laplacian of Gaussian
(LoG) approach (Marr, Hildreth, & Brenner,
1980; Sotak & Boyer, 1989) and its approxi-
mation, the difference of Gaussian (DoG) filter
(Birch et al., 2010). These algorithms first
subject an image to a Gaussian blurring filter
as described in the previous section, followed
by the Laplacian operator. These methods
are especially useful in detecting edges in
low-SNR images. Figure 7D shows an image
containing targets of interest with relatively
low SNR. In Figure 7E, the results from LoG
edge detection are shown using a Gaussian
filter size of 1.5 pixels. In contrast, the image
in Figure 7F shows the same operation but
with a 5-pixel Gaussian filter size. As can be
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seen, while increasing the Gaussian filter size
can better ameliorate the effects of noise in
detecting features, it comes at the expense of
removing smaller features from the image.
Derivative-based edge detectors can pro-
vide a powerful method of feature detection in
cases where simple intensity thresholding may
fail. By considering relative changes in pixel
values, otherwise indistinct or non-uniform
objects and particles can be sensitively ex-
tracted from even low SNR images. However,
it is important to note that not all isolated
fluorescent signals are appropriate targets for
analysis. It is conceivable, for example, that
only objects of a certain size or shape are bi-
ologically important targets. To home in on
these specific targets while disregarding other
above-background fluorescent signals requires
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further strategies that would distinguish and
detect the unique morphological parameters
possessed only by the required targets. In other
words, further filtering of the selected tar-
gets based on morphology will be required
(Meijering, 2012; Ruusuvuori et al., 2010;
Smal, Loog, Niessen, & Meijering, 2010; Xing
& Yang, 2016).

OBJECT SEGMENTATION

Feature recognition via thresholding or
edge detection is often followed by morpho-
metric transforms, even after the processing
steps outlined above are performed. Morpho-
metric operations transform binary images so
that individual targets are better represented
with respect to their overall shapes and bound-
aries. In other words, they can be used to re-
fine binary masks that exhibit extraneous (and
unwanted) features. Morphometric operations,
for example, can be used to prune away neurite
outgrowth so that the analysis can be focused
on the somatic cell bodies. They can also be
used to fill cavities in a structure so that im-
perfections from threshold application do not
skew analysis.

Morphometric Operations

Morphometric operations comprise four
basic operators: erosion, dilation, opening,
and closing. As the name implies, erosion re-
moves the outermost pixels at an object bound-
ary, making them shrink in size. In this way,
small unwanted objects or small structural fea-
tures can be removed from the image. Dila-
tion, on the other hand, adds pixels to object
boundaries. This can remove erroneous cav-
ities within an object. An opening function
consists of erosion followed by dilation and
is used to smooth the target contours by elim-
inating trivial features, small protrusions and
breaking narrow connections while preserving
relative size. This contrasts with closing (dila-
tion followed by erosion), which is also used
to smooth contours but through the converse
approach of fusing weakly connected blobs
and eliminating holes. These four operations
can, in turn, be combined to generate more
advanced operations, including skeletoniza-
tion, thinning, and hole filling, among others
(Gonzalez & Woods, 2002).

Depending on target density in the image,
the preceding steps may still result in multi-
ple objects that share the same boundary. This
can be the case in many biological scenarios,
such as tracking individual cells in a migrat-
ing epithelial layer or intercalated and overlap-
ping organelles such mitochondria and endo-

plasmic reticulum. Separating individual, but
not necessarily well-isolated, objects will of-
ten demand a watershed operation as the last
resort for full segmentation.

Watershed

The intensity profile of a fluorescent im-
age can be considered as a landscape, with
low-intensity areas represented by valleys and
high-intensity areas represented by peaks. Wa-
tershed algorithms evaluate the topological
structure of an image and subdivide it into
multiple regions. As this process was origi-
nally described for studying watershed areas,
each valley behaves as a water basin, contain-
ing pixels surrounding a local minimum or
seed point. As the water level rises accord-
ing to a flooding procedure, the basin grows
by adding connected pixels until it reaches the
highest peak and interacts with neighboring
regions along watershed ridge lines (Beucher
& Lantuejoul, 1979).

This description of watersheds works well
on grayscale images. However, in the case of
object tracking, the targets are already seg-
mented and binary masks created. By defini-
tion, a binary masked image has no intensity
variations that could create a landscape with
peaks and valleys. To facilitate the watershed
execution, the flat binary image needs to be
transformed into an image with landscape fea-
tures capable of supporting the “flooding” pro-
cedure.

To accomplish this, a distance transforma-
tion of the binary masks has to be calcu-
lated (Jain, 1989). As shown in Figure 8, the
three overlapping objects in Figure 8A can
be distance-transformed into a quasi-intensity
map as shown in Figure 8B. Distance trans-
formation is accomplished by assigning each
pixel a value equivalent to the minimum Eu-
clidean distance to the edge of the mask.
The further a given pixel is from the edge,
the higher the “intensity” value it will be as-
signed. Figure 8B is now essentially a land-
scape with intensity features to be “flooded” by
the watershed operation. As a result, the three
objects can be segmented (and colored differ-
ently) as shown in Figure 8C. Here, a pro-
cedure known as connected-component label-
ing has been performed that assigns a label to
each segmented target (i.e., a group of con-
nected pixels). This is useful for identifying
all unique targets and for associating various
mathematical descriptors (to be discussed in
the following section) to each target.

Watershed algorithms perform best with
circular objects that have relatively little
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Figure 8 The watershed method can be used to split touching objects. (A) A binary mask
representing three elliptical objects. The watershed method uses peaks and valleys to identify the
boundaries of objects. (B) The distance transform of (A), in which each value corresponds to the
minimum distance to the edge of the mask. (C) The final segmented image.

overlap. These method tends to under-split tar-
gets that have large overlaps and over-split
irregularly shaped targets, such as multiple
cell protrusions or invaginations (Roerdink
& Meijster, 2000). Many techniques build
upon the original watershed technique to mit-
igate under- or over-splitting (Lin et al.,
2003; Neves, Castro, Tomas, Coimbra, &
Proenga, 2014; Qi, Xing, Foran, & Yang, 2012;
Winter et al., 2018). Ultimately, accurate ob-
ject segmentation is vital. Errors in the shape
or number of targets will ultimately corrupt
the results needed in the following stages of
tracking (Winter, Mankowski, Wait, Temple,
& Cohen, 2016)

TARGET LOCALIZATION

Successful object segmentation brings us to
the final step prior to tracking. As we make
the critical transition into the actual track-
ing steps, it is important to explore exactly
what a computer algorithm can practically fol-
low. Whether the information one seeks in the
tracking experiment is motion directionality
and/or velocity, a tracking algorithm requires
the true target to be a concise mathematical
descriptor — a frame of reference that can
be interpreted. Consider a more practical ex-
ample in which a biologist seeks to track cell
movement. In reality, tracking algorithms do
not track a “cell” per se. Instead, they track a
reference point within an object. As a result,
the choice of mathematical descriptor will af-
fect how the algorithm localizes the target and
thereby the accuracy of the quantitative out-
come and data interpretation, as outlined be-
low.

Object Localization
Consider the case of a stationary cell ex-
tending large lamella to explore its surround-
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ing. Lamellar extension may not necessarily
lead to actual cellular locomotion. So, an ob-
server tracking the edge of the lamella as a
frame of reference will likely detect movement
when another observer tracking the nucleus
position will not. The choice of the mathe-
matical descriptor (biological frame of refer-
ence) thus matters immensely, and the choice
is often hypothesis driven. It is important to
understand exactly which part of an object is
localized by a chosen mathematical descriptor
(Bajcsy et al., 2015; Stegmaier et al., 2016;
Winter et al., 2011).

The two most commonly used mathemati-
cal descriptors are centroid and center of mass
(COM). As shown in Figure 9, the centroid
is the geometric center of the selection — the
average of the spatial coordinates of all the
pixels in the object. Thus, the centroid of a
circle will be its center. The COM, however, is
the intensity-weighted average of the coordi-
nates of all the pixels. As shown in Figure 9A
and B, if the intensity is not evenly distributed,
the COM will gravitate toward the area with
higher molecular abundance. More interest-
ingly, the object shape can sometimes shift
the COM out of the actual target, as shown in
Figure 9C. Therefore, the appropriate math-
ematical descriptor of target position should
be chosen carefully and be kept consistent to
prevent erroneous comparisons between data
sets.

Particle Localization

While objects can be irregularly shaped
when imaged, single particles appear as
diffraction-limited spots whose positions
should be less ambiguous in comparison
(Dimiccoli, Jacob, & Moisan, 2016). Thus,
tracking single particles generally only re-
quires determining their positions in 2D or 3D
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Figure 9 Schematics showing how centroid and center of mass (COM) are affected by the
intensity distribution and shape of the target. (A) In a target with homogenous intensity, the centroid
and COM will coincide. (B) In targets with inhomogeneous intensities, however, the centroid and
COM will not always overlap, with the COM gravitating towards brighter regions. (C) Concave
targets can have centroid or COM positions that are outside the boundaries of the target itself.

to reconstruct trajectories. Morphological pa-
rameters are ill defined in the case of single
particles, as the feature of interest is taken to
be the PSF of the imaging system and is con-
sidered invariant.

The precision of a particle localization mea-
surement will be one of the most important
factors that determine the success of further
analysis, as discussed later. The localization
of a single particle can, in theory, be de-
termined with an arbitrary precision that de-
pends on the SNR (Bobroff, 1998; Deschout
et al., 2014; Kubitscheck, Kuckmann, Kues, &
Peters, 2000; Thompson et al., 2002). In prac-
tice, however, the localization precision of sin-
gle particles is generally limited to >10 nm in
the x and y directions, with z-localization preci-
sion typically two- to fourfold worse (Huang,
Wang, Bates, & Zhuang, 2008; Juette et al.,
2008; Pavani et al., 2009), although there are
notable exceptions that display nearly equal
localization precision in all three dimensions
(Shtengel et al., 2009).

Multiple algorithms exist, with increasing
complexity and precision, for localizing sin-
gle particles. (i) Manual tracking: whereby the
user simply infers the position of the particle
without any further criteria, as in plugins for
ImageJ (Rueden et al., 2017) that can record
movements between frames. (ii) Local maxi-
mum selection: pixel intensities are evaluated
following grayscale dilation, and the bright-
est is selected as the location of the particle
to the nearest pixel (Jain, 1989; Sbalzarini &
Koumoutsakos, 2005). (iii) COM (as discussed
above): particle position can be inferred to

within sub-pixel precision, but with high sen-
sitivity to noise.

While the methods above can provide
good approximate particle positions, in prac-
tice more precise calculations are usually em-
ployed. (iv) Using radial-based approaches,
the lateral position of a particle is geometri-
cally calculated from the convergence of mul-
tiple lines drawn along the intensity gradient
of a single PSF. The intersecting point of all
such lines will indicate the location of a sin-
gle particle with high precision (Parthasarathy,
2012). (vi) Least-squares Gaussian fitting is
the most common approach. In this method,
the intensity distribution of the spot is fit to a
2D Gaussian function:

(—x)? (- y0)2:| o)

2 2
20; 20 ;

I[j = 1()6Xp |:—
where Iy is the peak intensity, o; and o; are
the standard deviations or widths of the PSF
in the x- and y- directions, respectively, <b>
is the mean background offset, and xy and yy
represents the particle position in space.

Given an image of immobile enhanced
green fluorescent protein (EGFP) molecules
as shown in Figure 10A, the intensity profile
of a single particle (Fig. 10B) can be well de-
scribed by a 2D Gaussian function (Fig. 10C).
It is important to note that particle movement
will naturally introduce blurring that can dis-
tort and widen the PSF. Nevertheless, the par-
ticle localization can still be calculated with
sub-pixel accuracy.
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Figure 10 2D Gaussian fitting for particle localization. (A) EGFP molecules, appearing as
diffraction-limited spots, immobilized on a glass coverslip and imaged using TIRF microscopy.
Scale baris 5 um. (B) A single image (17 x 17 pixels?) depicting the PSF for one of the molecules
in (A) was selected based on automatic thresholding. (C) Corresponding 2D Gaussian fit from
which the probable location of the particle along the x and y dimensions and associated localiza-

tion precisions are determined.

The precisions associated with these vari-
ous fitting approaches have been analytically
calculated by accounting for various sources
of noise (DeSantis, Zareh, Li, Blankenship, &
Wang, 2012; Thompson et al., 2002); exper-
iments employing “super-localization” analy-
sis can attain reported accuracies of several
nanometers (Manzo & Garcia-Parajo, 2015;
Yildiz et al., 2003). (vii) Finally, in maximum-
likelihood estimation approaches, the intensity
distribution of a single particle is fit to a “true,”
or measured, PSF instead of to a Gaussian
approximation. As expected, this procedure
can result in higher precision, but it is much
more computationally intensive (Mortensen,
Churchman, Spudich, & Flyvbjerg, 2010).

POSITIONAL LINKING
STRATEGIES

Positional linking relies on all the previ-
ously discussed processing techniques and is
the first step in connecting targets of interest
from sequential moments in time. In this step,
the temporal aspect of the analysis is intro-
duced into the process, and trajectories that
link target positions between frames are con-
structed. There are several hurdles that com-
plicate the successful establishment of tracks.
In principle, even with successful object seg-
mentation, the accuracy of creating tracks de-
teriorates when (i) target density increases,
(i1) instantaneous (frame-to-frame) displace-
ment distance increases, (iii) time interval be-
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tween frames increases, (iv) shape of the ob-
ject changes, (v) SNR decreases, (vi) intensity
of the object changes, (vii) number of poten-
tial path-crossings increases, and (viii) motion
heterogeneity increases — such as from ran-
dom movement to one facilitated by molecular
motors (Meijering, Smal, & Danuser, 2006).
In order to address various combinations of
the challenges listed here, a wealth of po-
sitional linking algorithms have been devel-
oped. It is beyond the scope of this paper to
include a comprehensive survey of every al-
gorithm available. However, we will catego-
rize the various methods into groups based on
how they perform positional linking to cre-
ate tracks. It is important to note that no one
single algorithm is superior. Thus, some prior
understanding of how each type of algorithm
functions should greatly help readers in mak-
ing the best-educated choice.

Overall, tracking algorithms can be roughly
classified into the following categories: (i)
those employing a local-nearest-neighbor ap-
proach; (ii) those using a cost matrix and the
linear assignment problem (LAP); and (iii)
those making track predictions, for example
using Kalman filters.

Local-Nearest-Neighbor Tracking
Algorithm

As shown in Figure 11, the local-nearest-
neighbor (LNN) method looks for the nearest
neighbor of a particle in each successive frame
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Figure 11

Local nearest neighborhood. The user-defined maximum radius (rmax) sets the search

radius for the LNN algorithm. The shortest frame-to-frame displacement (hence the term “nearest
neighbor”) will be linked by the algorithm with a track. This method works well under conditions in

which particle density is low.

within the search radius set by the user. The
size of the search radius is thus a critical part
of the experimental assumptions that need to
be made. If an object is detected outside the
radius, no link will be made, and the track will
be terminated. The unlinked object in this new
frame will then be considered a new object
(and a new track will begin). As is clear from
Figure 11, LNN will fail when (i) the temporal
resolution is set too low or the radius is set too
short (not adhering to the condition that p <
0.5, as discussed earlier in the image acquisi-
tion section) relative to target speed (Jagaman
& Danuser, 2009), or (ii) the density of tar-
gets is too high, such that there are too many
candidate targets for the algorithm to make the
connection (Crocker & Grier, 1996).

Multiple-Hypothesis Tracking
Algorithms: General Overview

Even with images properly processed for
subsequent tracking, the problem of follow-
ing biological movement is complex. Parti-
cles or objects can move in and out of the
focal plane, merge or divide, engage in near-
Brownian movement, move along the same
track (as in microtubule-based movement or
within a narrow axon), move as a cohort (as in
epithelial cell sheet migration), change shape
during locomotion, or even change their state
of existence by being degraded or synthesized.

The problems commonly encountered in
biology call for an algorithm that can con-

sider the cumulative scenarios holistically in
the system rather than exploring a confined
neighborhood limited by a user-defined ra-
dius. To overcome this problem, a multiple-
hypothesis tracking (MHT) algorithm was first
developed as early as 1979 (Reid, 1979). The
MHT approach considers all possible target
trajectories within the confines of user-defined
motion for the entire time-lapse sequence. In
doing so, MHT tests all possible “hypotheses”
or hypothetical models that can possibly con-
struct the trajectory of the targets. Once that
computing-intensive, hypotheses-testing task
is done, the algorithm chooses as its final solu-
tion the scenario with the largest “nonconflict-
ing” collection of trajectories. The algorithm
will classify a scenario as conflicting if two
paths share, in any given frame, the position
of the same target. Theoretically, MHT may be
the most ideal algorithm; however, it requires
computational power that is not practically
feasible.

To improve the computational efficiency
while harnessing the globally optimal solution
offered by the MHT algorithm, several heuris-
tic approaches (Chenouard, Bloch, & Olivo-
Marin, 2013) have been developed that attempt
to divide the computation into two stages by (i)
performing many local solutions first in frame-
to-frame positional linking, and then (ii) solv-
ing the frame-to-frame connection problem in
a spatially global manner. We will survey a few
that are commonly used and widely available
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6.0 9.0
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1.0 6.0
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Cost Matrix and Assignment Problem

Jobs
3 4 5 6
1.0 4.0 3.0 2.0
2.0 9.0 3.5 4.0
5.0 9.5 6.0 7.5
1.5 5.0 2.0 4.5
2.5 6.5 9.5 3.0
5.5 8.5 4.5 6.0

Figure 12 Example of a cost matrix, commonly encountered in industrial task assignment. Each
different machine may perform the same task but with a different cost. The goal of an assignment
problem is to find a way to solve all the problems for the minimal cost.

in shareware such as FIJI (Schindelin et al.,
2012) or ImageJ (Rueden et al., 2017).

Cost Matrix and Assignment Problem
in Tracking

While there is no one superior approach that
can handle all of these challenges, most meth-
ods are various permutations of cost matrix
and assignment problem. The concept of the
assignment problem was originally devised to
deal with the industrial challenge of assigning
n number of “jobs” to n number of “machines”
in the most efficient manner (Mulmuley,
Vazirani, & Vazirani, 1987). A common prob-
lem encountered in industry is how to get the
most tasks accomplished for the lowest cost.
Imagine a factory with six different machines
that can perform all the tasks, but where each
one will incur different costs to complete the
distinct tasks due to machine specialization.
This problem is presented as a cost matrix in
Figure 12. The goal of the assignment problem
is then to minimize the total cost required to
complete the job without exceeding the avail-
able resources of the machines. So how does
this apply to object tracking? The assignment
problem in itself is an act of “linking.” In the
original context, it is to link a job to a ma-
chine. However, this can easily be deployed
to link targets in consecutive image frames, or
to merge two tracks into a more continuous
single trajectory. The challenge in this case is
that assignment can be performed in numerous
possible ways and tracking algorithms will al-
ways provide an answer to the problem, so the
issue is whether the answer provided is op-

Current Protocols in Cell Biology

timal. Assignment problem algorithms must
therefore be based on a set of experimental pa-
rameters so that the subsequent answer is re-
producible, quantifiable, and verifiable. This
is where the cost matrix comes into play. In
fact, the main feature that sets one tracking al-
gorithm apart from another usually lies in the
cost matrix, which will be explored further in
the following sections.

Linear Assignment Problem Tracker

The linear assignment problem (LAP) is
a widely used algorithm for object tracking
(Jagaman et al., 2008), and represents an ap-
proximation of the MHT approach. The LAP
was originally devised to tackle two distinct
sets of tracking needs: particle linking and sub-
sequent track linking. Track linking is espe-
cially important in cases where targets undergo
merging and/or splitting events as well as when
particles potentially disappear for one or more
frames only to be reacquired later. These com-
plex decisions can be treated as individual “hy-
potheses,” each in competition with the others.
Each hypothesis can then be weighted by a
cost function. For example, consider the costs
of linking two particles:

Let C;; be the cost of linking particles i and
J>and dizj be the square of the distance between
these particles.

Then, if dizj is greater than the maximum
allowable distance set by the user, the cost [;;
is set to infinity, essential prohibiting the two
particles from being linked.

Additional costs can be added to the cost
matrix to handle other situations commonly
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encountered in biological samples, taking into
consideration such issues as whether the tar-
get maintains similar brightness from frame to
frame, or whether the target maintains simi-
lar shape/size in consecutive frames. For ex-
ample, one can add “features penalties™ that
would discourage linkage of particles that
do not resemble one another. Accordingly,
features can be preferentially weighted as
follows:

pi = WM so that C;; = (djj x p;)*,

fit+ fi
where p; = cost of feature penalty, W =
weighted factor, f; = particle i feature (size,
shape, etc.), and f; = particle j feature (size,
shape, etc.).

In treating each linking parameter that way,
the LAP tracker associates every potential as-
signment with a cost, C. The LAP algorithm
then identifies, in each step, the combination
of assignments with the minimal sum of costs.
The LAP algorithm as implemented by Jaqa-
man et al. (2008) works at two steps: (i) linking
targets in consecutive frames, and (ii) linking
tracks to form longer trajectories. In frame-
to-frame linking, the decision must be made
whether a target in frame ¢ could be linked to
another one in frame ¢ + I (track continues) or
linked to nothing (track ends). Conversely, a
target in frame 7 + / may not be linked to one in
frame ¢ (track begins). The LAP tracker algo-
rithm makes temporal decisions based on tar-
get relationships between consecutive frames,
yet it makes decisions globally in space as it
considers the global “cost” of making all the
linkages. Therefore, while assignments with a
lower cost are more likely to be selected, the re-
quirement for a globally minimized cost could
result in the selection of individual linkages in
which the cost are not the lowest.

Kalman Filter

In addition to making decisions for target
linking based on nearest neighbor or cost ma-
trix algorithms, the accuracy of positional link-
ing can be further enhanced based on predic-
tions. This is powerful especially in the case
where (i) the density of targets is high, leading
to a high frequency of path-crossing incidents,
and (i) the targets move with roughly constant
velocities, even though the velocity does not
need to be the same for all the tracked tar-
gets. One predictive tool commonly used in
motion tracking is the Kalman filter (Kalman,
1960; Smal, Draegestein, Galjart, Niessen, &
Meijering, 2008). It is used to make predic-
tions of future states based on past and present

ones. When applied to motion tracking, the
Kalman filter computes the most probable po-
sition of the target through the following steps
as outlined in Figure 13: A nascent track of a
moving target is created using the conventional
cost-matrix-based LAP algorithm as discussed
in the previous subsection. Each track created
based on two consecutive positions of a tar-
get is now used to generate an instance of a
Kalman filter (positions with dashed outlines
in Fig. 13), which estimates the probable posi-
tion of the target in the subsequent frame. Con-
sequently, there will be as many Kalman filters
as there are tracks. It is based on these “pre-
dicted” positions that the linking decisions are
made, again, utilizing the LAP framework as
the basic principle, with a user-defined square
distance as the “cost.”

As expected, Kalman filters enhance the ac-
curacy of positional linking under conditions
in which the density of targets to be tracked is
high and particles move with a relatively con-
stant velocity. Conversely, if the targets exhibit
inconsistent velocities or rapid changes in di-
rection, that will negatively impact the perfor-
mance of the Kalman filters. The reason for
this is that the Kalman filter assumes that tar-
get movement is not random. This highlights
the fact that there are more complex types of
movement behavior that need to be described.
To achieve this, the data need to be mathemat-
ically modeled.

ANALYSIS AND MODELING OF
TRACKING DATA

Ideally, the goal of any tracking experi-
ment is to extract relevant, quantitative de-
scriptors that provide meaningful biological
information (Bannai, Lévi, Schweizer, Dahan,
& Triller, 2006; Brandenburg & Zhuang, 2007;
Goulian & Simon, 2000; Akihiro Kusumi
et al., 2005; Monnier et al., 2015; Rothen-
berg et al., 2011; Ruthardt, Lamb, & Brauchle,
2011; Seisenberger et al., 2001). In the case
of SPT, such analyses will most often char-
acterize particle motion, interaction, or both.
Tracking of larger objects such as organelles
or whole cells often encompass similar anal-
yses, but with added complexities that may
include changes in shape and intensity, as well
as merging and/or splitting of multiple objects.
This section will outline commonly used track-
ing analysis methods, with an eye towards both
the underlying theoretical assumptions and
practical considerations that should be taken
into account, along with a key example from
recent literature.

Current Protocols in Cell Biology
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Figure 13 Kalman filter. At left, two nascent particle tracks are shown in light orange and light blue, respectively.
Without using a Kalman approach, the light orange particle at time t is linked to the dark blue particle at time
t+ 1, with the remaining dark orange particle unlinked. At right, the same nascent trajectories are shown. With the
Kalman filter, the predicted changes in position of the light orange and light blue particles are found from time ¢
to 4-1. These predicted positions are then compared to the actual particle positions at t+7. In this way, position
linking proceeds by extending both the orange and blue trajectories, on the basis of their prior behavior.

Measuring Particle Dynamics and
Diffusion

Biomolecules move throughout a cell via
a wide variety of means. Broadly speaking,
these mechanisms can be classified as active,
passive, or a mixture of both. Active transport
of molecules or structures requires an energy
source such as ATP and is often facilitated by
molecular motors such as kinesin and myosin,
among many others, in concert with a scaf-
fold protein such as tubulin or actin. In such
cases, it is useful to define the dynamic behav-
ior of the particles via several parameters such
as average velocity, instantaneous velocity, to-
tal distance traveled, and net distance traveled,
among others. These quantities are easily cal-
culated from the target trajectories developed
in the steps described previously (Meijering,
Dzyubachyk, & Smal, 2012).

Passive transport, on the other hand, is gov-
erned by the inherent diffusion of a molecule
in whatever environment it is moving through,
such as the cytoplasm, nucleus, or one of
the many lipid membranes present in a cell.
Diffusion can be described as a random mo-
tion of a particle that is solely determined
by the exchange of kinetic energy between it
and its surrounding molecules through colli-
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sions. Many biochemical processes are funda-
mentally limited by how quickly a molecule
can diffuse to a region of interest; likewise,
a disease state may manifest as aberrant dif-
fusional behavior of one or more molecules
(Trimble & Grinstein, 2015; Verkman, 2002).
Thus, describing the diffusive behavior of
a molecule in a cell can provide important
insight.

Figure 14 broadly illustrates the various
modes of transport that may be measured.
In Figure 14A, a particle diffuses through a
homogenous medium. Although the simplest
scenario to characterize, this is rarely encoun-
tered in biological environments. In Figure
14B, a particle diffuses through a more biolog-
ically typical heterogenous medium, with tem-
porally and/or spatially varying properties that
affect particle diffusion. In Figure 14C, a parti-
cle diffuses in a more complex, heterogenous
environment. Additional obstructions and/or
energy sources can impede or potentiate the
normal diffusion process, respectively. As can
be surmised, quantifying diffusion can be more
difficult than using the simpler distance and/or
velocity metrics discussed above. This is be-
cause diffusion, unlike directed motion, is ran-
dom in nature.
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Figure 14 Particle movement through different diffusion environments. (A) Particle diffusion through a homoge-
nous medium, which is rarely encountered in biological samples. (B) A more realistic scenario, in which a particle
is diffusing through an environment with heterogeneous viscosity. (C) A more complex biological environment
with heterogenous viscosity and obstructions, in which a particle moves via constrained and/or facilitated diffusion
(green) resulting in stochastic and persistent movements, respectively.
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An initial quantitative description of diffu-
sion was proposed by Fick (Fick, 1855), in
which he introduced the concept of a diffu-
sion coefficient, usually denoted D. This pa-
rameter describes the mobility of a diffus-
ing particle through some medium. Particles
with high diffusion coefficients will tend to
disperse in that medium more quickly than
those with lower values. Fick showed that if
one were to determine the overall distribu-
tion of a molecule at an initial time point,
and then measured a change in its distribution
over time, its diffusion coefficient could be
determined.

This fact is exploited in various imaging
methods such as fluorescence recovery af-
ter photobleaching (FRAP) and fluorescence
loss in photobleaching (FLIP) (Lippincott-
Schwartz & Patterson, 2003; Rabut &
Ellenberg, 2004). But while widely utilized,
FRAP and FLIP are inherently ensemble, or
average, measurements. In other words, these
methods do not easily discern local variations
in diffusion, nor do they easily identify mul-
tiple diffusional states or particle subpopula-
tions that may be critical to understanding a
given biological behavior. To do so, it would
be necessary to determine the diffusion coeffi-
cients for individual molecules across a range
of locations and times in a sample.

SPT offers a way to measure this diffu-
sion coefficients of individual particles within
a sample. It is not an ensemble measurement
method subject to the averaging effects of
FRAP and FLIP; as such, it is better able to
detect local spatiotemporal variations in dif-
fusion or particle sub-populations with dif-
fering behaviors. To calculate the diffusion

coefficient of a particle from its measured tra-
jectory, it is important to distinguish between
distance and displacement. The distance that
a diffusing particle travels over any period of
time is a scalar quantity. In other words, it
will always be a positive value. Displacement,
on the other hand, is a directional (or vector)
quantity and can therefore be positive or nega-
tive. In the case of a freely diffusing particle, it
has an equal chance of moving in any direction
at any time point. So, while the total distance
that a diffusing particle travels over any period
of time is always positive, its net displacement,
on average, is always zero (Berg, 1993).
However, the squared displacement of a
particle will not be zero, since this quantity is
always positive. In fact, the average (or mean)
squared displacement of a particle over a given
time interval provides the key to calculating its
diffusion coefficient. It has been shown that in
an ideal situation, whereby a particle is ran-
domly and isotropically diffusing, the follow-
ing relationship exists (Chandrasekhar, 1943):

MSD = 2y DAt.

Here, MSD is the mean squared displace-
ment and At represents a time interval. To
better understand this relationship, consider a
particle that was imaged for 100 s in 1-s in-
crements (101 frames). The possible values of
At to consider are then 1, 2, 3, and so on up to
100 s. The MSDs are calculated for each pos-
sible time interval. Thus, for a single parti-
cle trajectory, 100 displacements can be cal-
culated for At = 1 s, such that these dis-
placements are then squared and subsequently
averaged to get an MSD value. Likewise, 50
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Figure 15 MSD analysis for freely diffusing particles. In (A), three example particle trajectories are shown in
blue, green, and red, respectively. Each particle starts at the origin (0,0) and diffuses randomly in the x and y
directions over time. In (B), the MSD as a function of At is plotted for each particle. Note that in this case, each
particle exhibits a linear MSD vs. Atrelationship, but with each having a different slope. This would indicate different

diffusion coefficients for each particle.

displacements can be calculated for each 2-s
interval, and so on. The above equation indi-
cates that the MSD of a particle is a linear func-
tion of the time interval being considered. The
slope of that line is 2yD, where y indicates the
number of spatial dimensions through which
the particle can diffuse.

It is important to consider the value of y
in light of the biological behavior being mea-
sured. For example, if a molecule is randomly
diffusing in a membrane, y = 2, since the
particle can only move within the 2D plane
of the lipid bilayer. Conversely, if a molecule
is diffusing throughout the cytoplasm or nu-
cleus, it is free to diffuse in three direc-
tions, making 3 the appropriate value for v.
In either case, computing the slope of the
MSD of a particle vs. At curve via a least-
squares regression can yield the diffusion co-
efficient (D) of an individual particle. Fur-
thermore, it requires no prior knowledge of
its properties or surroundings, save its posi-
tions over time and the number of degrees
of freedom of its motion, as illustrated in
Figure 15. In Figure 15A, three 2D parti-
cle trajectories are shown in red, green, and
blue, respectively. In Figure 15B, the color-
corresponding MSD vs. At curves are shown
for each particle, with a linear relationship
evident. Since the three plots have markedly
different slopes, it is surmised that the three
particles have different diffusion coefficients.
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Practical Considerations

As discussed above, MSD values can be
calculated for any At that is less than the dura-
tion of the particle trajectory. However, as At
increases, the number of displacements that
are averaged to calculate the MSD decreases.
For example, again consider a particle trajec-
tory lasting 100 s, captured at 1-s intervals.
For At =1s, 100 independent displacements
can be calculated. However, only one displace-
ment value exists for At = 100 s. Thus, the
MSD value for Ar = 1 s is expected to be
much better averaged than the value for At =
100 s. In general, the larger the At value (rel-
ative to the total trajectory length), the more
statistical fluctuation there will be in the MSD
value. This can very often resultin MSD vs. At
curves that diverge widely from the linear case
for large At. For that reason, it is advisable to
only consider a portion of the total possible
MSD vs. At curve to calculate a diffusion co-
efficient. Michalet provides an excellent and
in-depth exploration of the optimal number of
At values to include in the least-squares fit
(Michalet & Berglund, 2012; Qian, Sheetz, &
Elson, 1991). However, many algorithms, in
practice, simply compute the diffusion coeffi-
cient using the first 10% to 25% of At values,
while ignoring the remainder.

A second practical factor to consider is lo-
calization error. As discussed previously, the
ability to accurately determine the location of
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a particle depends on its brightness, its speed,
and the exposure time of the camera used to
record the image. As a simple approximation,
the equation above is modified to account for
the localization uncertainty (Michalet, 2010):

MSD = 2y DAt + 2yo°.

Here, o is the localization uncertainty with
the other parameters already defined. Thus,
we can see that the particle localization error
will create a positive offset in an MSD curve,
which can be extracted from least-squares re-
gression. We refer readers to other studies
(Berglund, 2010; Gal, Lechtman-Goldstein,
& Weihs, 2013; Michalet, 2010; Michalet &
Berglund, 2012; Saxton, 1997; Saxton, 2009)
for more in-depth exploration of optimal MSD
curve analysis.

Measuring Non-ideal Diffusion

A hallmark of “ideal” diffusion — also
called Fickian or Brownian motion — is that
a particle is equally likely to move in the
positive or negative direction at all points
along its trajectory. This may be true even in
heterogeneous environments, as illustrated in
Figure 14A and B. However, we can imagine
that this is very often not the case in complex
biological systems. Molecules may be “con-
fined” in one or more dimensions by rigid
structures within membranes or the cytoplasm
(Kusumi, Sako, & Yamamoto, 1993; Sax-
ton, 1995; Saxton & Jacobson, 1997; Schiitz,
Schindler, & Schmidt, 1997). Conversely,
molecules may often undergo directed motion
potentiated by an external energy source such
as ATP (Saxton, 1994), as shown in Figure
14C. Either of these situations may result in
so-called anomalous diffusion, whereby linear
MSD analysis does not hold well.

Consider again Figure 15. Although each
particle displays a unique MSD vs. Af curve,
the corresponding slopes are linear. In other
words, the MSD of a particle per time lag
does not change throughout the length of its
trajectory. Conversely, consider a particle dif-
fusing through an actin meshwork. At small
time scales, the particle may behave as a
freely diffusing molecule. But, at larger time
scales, the particle will eventually encounter
an actin filament that serves to restrict its mo-
tion. In such cases, the slope of the MSD curve
might not be constant but could decrease with
larger At values. This is referred to as sub-
diffusion. Likewise, an increase in the slope of
the MSD curve with larger Af values may in-
dicate the opposite; the squared displacements
become bigger than expected at longer time

intervals, indicating that some additional en-
ergy source is being expended to move the
particle over longer time scales. Such behav-
ior is often termed super-diffusion, or facili-
tated/active transport, and is indicative of some
external force acting on a particle beyond its
natural diffusive behavior. To account for such
non-linear behavior (anomalous diffusion), a
multitude of models have been proposed.
The approach that has been most extensively
employed uses the power-law formulation
(Metzler & Klafter, 2000; Metzler, Jeon,
Cherstvy, & Barkai, 2014; Saxton, 1997):

MSD = 2y DA,

As can be seen, this formulation adds an
additional parameter « to the relationship be-
tween MSD and Ar. To help understand the
meaning of the « value, Figure 16A, B, and
C illustrate the behaviors described previ-
ously. In panel A, a particle is allowed to
diffuse freely, albeit through a heterogeneous
medium. In B and C, a particle encounters ob-
structions to free diffusion and external energy
sources, respectively, that cause its motion to
deviate from ideal diffusion. Figure 16D il-
lustrates the effect of different values of & on
the MSD curve. With an « value near 1, the
curve remains linear and can thus be thought
of as reflecting ideal Brownian motion (blue
curve). Values less than 1 indicate confined or
sub-diffusion (green curve). Likewise, « val-
ues greater than 1 suggest facilitated or super-
diffusion. While particle tracking data can be
modeled using the above equation, it is gener-
ally more convenient to use a log-log form to
extract D and « values:

log MSD) = « log(Af) + log(2y D).

In this way, the regression is now linear,
with the slope equal to «, such that the y in-
tercept can be used to determine the diffusion
coefficient, as shown in Figure 16E.

Using a power-law relationship to mea-
sure anomalous diffusion provides a simple
yet powerful way to draw important biolog-
ical conclusions. In addition to providing a
simple means to determine the diffusion coef-
ficient, the MSD curve has the useful property
that non-linearity of the curve can give con-
vincing evidence of suppressed or facilitated
dynamic behavior, thereby implying potential
interactions between the molecules of interest
and other structures.

The power-law formulation can be ex-
tremely useful in determining to what extent
particles undergo “non-ideal” diffusion. How-
ever, other analyses can give complementary

Current Protocols in Cell Biology
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mathematically simpler.

information. MSD analysis simply considers
the displacements of a particle; missing is any
characterization of particle direction. To that
end, the tendency of a particle to change direc-
tion between time points can also be quantified
(Wilson et al., 2016), as shown in Figure 17.
In Figure 17A, each of the particles has
the same average displacement magnitude per
time point, yet their trajectories look markedly
different. Calculating the change in direction
(represented by an angle) between each suc-
cessive time point in the trajectories generates
the circular histograms shown in Figure B, C,
and D, also called rose plots. The change in
direction (angle) of a particle is represented
along the azimuthal axis, while the frequency
for that angle range is displayed along the ra-
dial direction. Note that for the blue trajec-
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tory, the particle shows a near-equal chance
of changing direction from one time point to
the next. This would indicate Brownian, or
random, motion. But for the green trajectory,
the particle tends to continue along the same
direction, and thus the rose plot is centered
around 0°. This behavior can be seen in many
scenarios, such as cargo transport along micro-
tubules. Conversely, the red trajectory tends to
reverse direction at each successive time point,
as shown by a rose plot centered near 180°. As
can be imagined, this may be seen in situations
where a particle’s motion is constrained — this
may indicate some trapping mechanism (such
as a cargo molecule stuck inside a vesicle) or
may suggest a binding event. For example, a
signaling subunit binding to an engaged mem-
brane receptor may display confined diffusion
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Figure 17 Particle persistence direction and non-ideal diffusion. In (A), three particle trajectories are shown in
blue, green, and red. Calculating the change in direction of each particle across all time points makes it possible to
plot radial histograms (also called rose plots) in (B, C, and D). In these plots, the change in direction per time point
is represented as an angle, plotted in the azimuthal direction. The relative frequency of those changes is indicated
by the radial length of each bar. (B) Note that the blue particle does not display a strong preference in its change
in direction — the histogram is roughly “circular,” indicative of random, Brownian motion. (C) The green particle, on
the other hand, tends to change relatively little in its direction, and thus its radial histogram is centered near 0°. This
is suggestive of facilitated diffusion. (D) The red particle, in contrast, tends to move in the opposite direction from
each successive time point, as evidenced by a directional histogram centered at near 180°. This suggests confined
diffusion, as the particle changes direction more often than would be seen under random diffusion conditions.
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because its native diffusion is hampered by its
interaction with the receptor.

Multiple State Modeling

The above analysis methods implicitly
assume that the diffusion coefficient of a given
particle, calculated from a single trajectory
(or portion thereof), is constant. However, a
number of biological processes do not follow
this assumption. For example, it has been
suggested that transcription factors find their
cognate binding sites via a “search” mecha-

nism involving saltatory movement. In other
words, these molecules can be thought of as
having “fast” and “slow” diffusional states.
Conventional MSD analysis would paint
an incomplete picture of this heterogenous
mobility, as by definition, it represents an av-
eraging of particle displacements throughout
its trajectory. Several techniques have been
developed to characterize various diffusive
movements by isolating these states, within a
single trajectory, and studying them indepen-
dently, such as through transient confinement

Current Protocols in Cell Biology
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Figure 18 Bayesian selection of hidden Markov modeling (HMM-Bayes) analysis of multistate particle diffusion.
In (A), a single particle trajectory is shown, with segments corresponding to “slow” diffusion in pink and to “fast”
diffusion in blue. In (B), diffusional state changes and duration are indicated as segments across the length of the
trajectory. In (C), a scatter plot shows per-frame displacements. Note the slow displacements (pink) are clustered
nearer zero than the fast displacements (blue). In (D), a histogram of displacement values is shown, with a clear

separation between slow and fast states.

zone analysis (Simson, Sheets, & Jacobson,
1995).

A recently reported method by Monnier
et al., termed HMM-Bayes, offers a Bayesian
statistical approach to extract multiple diffu-
sion coefficients from a single particle trajec-
tory via hidden Markov modeling (Monnier
etal., 2015). While the approach requires users
to specify the maximum number of diffusional
(or active transport) states that a particle can
exhibit, it proposes the simplest model to ex-
plain a given trajectory. An example analysis
is shown in Figure 18A for a single-particle
trajectory exhibiting multi-state diffusion. Af-
ter analysis using the HMM-Bayes algorithm,
each segment in the trajectory is assigned to
either a “fast” or a “slow” diffusional state,
denoted by blue and pink, respectively. Figure
18B illustrates the amount of time the particle
spends in each diffusional state as segments of
the trajectory length. Figure 18C and D show
a scatter plot of x/y displacements (with the

Current Protocols in Cell Biology

same color scheme) and a histogram of dis-
placement magnitudes, respectively.

As can be seen, there are a multitude
of factors that need to be considered when
attempting to characterize particle diffusion
in cells. SPT offers the unique capability of
measuring molecular motion on a per-particle
basis, thereby avoiding artifacts due to ensem-
ble averaging. However, researchers should
approach such analyses with caution. MSD
analysis should be done with knowledge of
(1) the localization uncertainty inherent in the
data and (ii) the appropriate number of time
lags in order to give an accurate measure of
diffusion coefficients. Researchers should also
assess the degree to which particle behavior
deviates from ideal Brownian motion. Tools
such as those described in Figure 17 can aid
in determining whether anomalous diffusion
models, such as a power-law formulation, will
be a more appropriate choice. Furthermore,
researchers should consider whether the
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Figure 19 Plots of several thousand single-molecule trajectories in HEK293T cells expressing
a halo-tagged rhomboid-like 2 (RHBDL2) protein in the plasma membrane. The trajectories were
plotted such that the line color corresponds to the modeling diffusion coefficient, as indicated by
the color bar to the left of each plot. In (A), trajectories are shown for a group of cells in normal
medium. In (B), SPT results are shown for the same cells after addition of Mg-ionomycin. The
color-encoded diffusion constants show a clear increase in the overall diffusivity of RHBDL2. These
results correlated well with an increase in the protein’s enzymatic activity, providing novel insight
into its cellular function. This method of trajectory visualization can also be used to identify areas
of relative high and low particle diffusion. Results adapted with permission from Kreutzberger et al.
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molecules of interest may be displaying
saltatory motion — in which case, it is ad-
visable to attempt extracting multiple motion
descriptors from a given particle track.
Taking these considerations together,
single-particle tracking can be a powerful
method to generate novel biological insights.
For example, Urban and colleagues recently
used SPT-TIRF microscopy to show surpris-
ingly unique dynamic behavior of membrane-
bound rhomboid proteins in several cell
types (Kreutzberger, Ji, Aaron, Mihaljevic,
& Urban, 2019). This example illustrates
many of the aspects discussed above. Firstly,
fluorophore and instrument selection were
optimized prior to data acquisition. Halo-
conjugated Janelia Fluor dyes were used in
this case because of their superior brightness
and photostability (Grimm et al., 2015), as
well as genetic specificity. TIRF microscopy
was chosen as the ideal imaging modality,
as it pairs high imaging speed with excel-
lent background rejection for imaging events
near the plasma membrane. Once data were
collected, aforementioned imaging processing
techniques were used, including background
subtraction and Gaussian denoising. Subse-
quently, particles were detected via thresh-

old application, localized via Gaussian fitting,
and positions liked via nearest-neighbor anal-
ysis to form trajectories using the Mosaic par-
ticle tracking plugin for ImageJ (Sbalzarini
& Koumoutsakos, 2005), one of a num-
ber of freely available tracking algorithms
(Meijering et al., 2012).

Figure 19 (adapted with permission
from Kreutzberger et al., 2019) shows
HEK293T cells transfected with N-Halo-
tagged rhomboid-like 2 (RHBDL?2) proteins,
and labeled with Janelia Fluor 549 dye. In
Figure 19A, cells were first imaged in nor-
mal imaging medium; Figure 19B shows the
same field of view after treatment with Mg>*
and ionomycin. In both cases, single molecules
were tracked, and diffusion constants (D) were
extracted as outlined above for each particle
trajectory. Trajectories were then drawn using
a color scheme that indicates each respective
value of D. As suggested by the images, aver-
age diffusion constants increased by 2.5-fold
after this treatment. Interestingly, this corre-
lated very well with an increase in enzymatic
activity, thereby clearly relating rhomboid dif-
fusion to its function. The color-encoded rep-
resentation here can also be very useful in
visualizing changes in diffusion behavior in
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specific locations of a cell or tissue, thereby
identifying local areas of relative high or low
diffusion.

Object Tracking: Cell Dynamics and
Lineage Mapping

The discussion thus far has concentrated
on the tracking of particles, which can be
treated as point-like sources. As such, deter-
mining particle position over time is generally
sufficient to accomplish most common anal-
yses such as diffusivity measurements. How-
ever, tracking analysis can involve objects as
well. Many of the same analyses presented
above can be applied to tracking larger ob-
jects. However, diffusion-based metrics may
not be as useful in the case of organelles and
cells. Rather, parameters such as velocity (both
average and instantaneous) and distance trav-
eled, among others, may be more informative
(Meijering et al., 2012; Meijering et al., 2006).
Furthermore, object tracking also affords the
ability to analyze morphological parameters.
Simple metrics such as surface area, volume,
and eccentricity, as well as convexity and con-
cavity, can be useful in describing dynamic cell
behavior in the context of tracking. More com-
plex shape descriptors such as those based on
Zernike polynomials or principal-component
analysis have also been shown to be useful
(Pincus & Theriot, 2007).

Cellular dynamics combined with lineage-
mapping methods are highly prevalent in de-
velopmental biology. In this context, lineage
mapping refers to the tracking of both cell po-
sition and cell division into progeny within
the developmental stage of a living organ-
ism. While canonical cell lineage mapping
has been determined for simpler organisms
such as Caenorhabiditis elegans, modern lin-
eage mapping is nevertheless an active field
of research for more complex organisms as
well as for the analysis of mutant phenotypes
and other more in-depth investigations (Amat
et al., 2014; Chalfoun et al., 2016; Christensen
etal., 2015; Heid, Voss, & Soll, 2002; McDole
et al., 2018; Sato, Rancourt, Sato, & Satoh,
2016; Stegmaier et al., 2016; Tassy, Daian,
Hudson, Bertrand, & Lemaire, 2006; Winter
etal., 2011).

As a state-of-the-art example, a compre-
hensive exploration of mouse embryogenesis
using multi-view light-sheet microscopy in
tandem with novel computational frameworks
has been reported (McDole et al., 2018). In
this expansive study, advanced cell tracking
was performed under several scenarios using
a modular set of computational tools that are
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all publicly available. Initial cell identification
and tracking was performed using a Gaussian
mixture model (Amat et al., 2014) supple-
mented with a machine-learning component,
referred to as TGMM v2.0. Although this
approach can identify cell divisions, a separate
convolutional neural network approach was
implemented to detect mitosis events with
higher accuracy.

In Figure 20, results from an example cell-
tracking experiment are shown, describing the
dynamics of epiblast cells as they traverse and
exit the primitive streak. McDole and col-
leagues reconstructed lineages of individual
epiblast cells traversing the primitive streak
using a mosaic reporting approach (Pontes-
Quero et al.,, 2017), whereby only a sub-
set of cells express a fluorescent reporter. In
Figure 20A, tracks are shown of cells that en-
ter the streak and exit on the opposite side. In
Figure 20B, tracks are shown of cells that en-
ter the streak and divide, and whose daughter
cells exit the opposite side. In Figure 20C, cell
lineage tree diagrams show the proliferative
behavior of the cells described in the previous
panels. The black lineage tree indicates cells
that entered the primitive streak but did not exit
the opposite side. Cell lineage diagrams, such
as this one, typically represent time along one
direction and bifurcations in each line indicate
cell division events, such that the progenitor
of each cell can be identified.

This example highlights the wealth of
biologically relevant information — both
dynamic and morphological — that can be
available when performing object tracking.
Ultimately, the appropriate summary statistics
that adequately describe a tracking experi-
ment will depend entirely on the biological
question at hand. However, the potential for
measurement bias is nearly always present.
While innovative ways to remove such biases
has received attention (Zaritsky et al., 2017),
often the most meaningful conclusions in
any tracking experiment are those based on
comparisons between samples, conditions, or
other perturbations rather than on the absolute
value of any particular parameter.

FUTURE DEVELOPMENT

As our ability to acquire increasingly more
complicated live-cell imaging data advances
with modern technologies, so does the impor-
tance of particle- and object-tracking analysis.
Applied appropriately, these analyses can re-
veal subtleties of movement unnoticeable to
the human eye. Yet, as has been shown by di-
rect comparison (Chenouard et al., 2014), as
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Figure 20 Epiblast cell tracing in developing mouse embryo. In (A), tracks are shown of cells
that enter the primitive streak and exit at opposite sides. In (B), tracks are shown of cells that enter
and divide, and whose daughter cells exit through opposite sides. In (C), cell lineage trees are
shown for the cells represented in (A) and (B). Note that the horizontal direction indicates time,
with bifurcations in the traces denoting cell division events. Blue traces indicate cells that behaved
like those indicated in (A); red traces indicate cells that behaved like those described in (B); and
black traces indicate cells that traversed the primitive streak but did not exit on the opposite side.

A pink “X” denotes apparent cell death.

well as explained here, there is currently no
universally applicable best approach. In this
guide, we aim to balance the breadth of the
various steps and challenges involved in per-
forming a successful tracking analysis with
the depth of knowledge required to gain ba-
sic understanding of the underlying principles
of each method — from image acquisition to
subsequent measurements.

The deluge of data created by the next
generation of microscopes will challenge the
current state of the art for annotating, stan-
dardizing, storing, compressing, processing,
and analyzing multi-dimensional imaging data
(Amat et al., 2015; Meijering et al., 2006).
More importantly, the prospect highlights sev-
eral challenges currently facing tracking anal-
ysis. (i) For example, none of the tracking
strategies covered in this paper deals with the
difficult challenge of tracking targets of in-
terest in the context of a moving organism.
Yet, the recent advances in light-sheet micro-
scopes (Huisken & Stainier, 2009; Huisken,
Swoger, Del Bene, Wittbrodt, & Stelzer, 2004;
Ji, Shroff, Zhong, & Betzig, 2008; McDole
et al., 2018; Vladimirov et al., 2014) are tai-
lored specifically to address this type of bio-
logical question. Several recent innovative ap-
proaches (Christensen et al., 2015; McDole
et al., 2018) provide exciting examples of
how tracking and lineaging algorithms can be

adapted to these systemic biological questions
in the future. (ii) Our paper focuses on track-
ing targets that can be easily segmented from
high-SNR images or after successful image
processing. However, there are structures in
biology for which this may not hold true. Ex-
amples are nebulous molecular clouds such as
ionic signaling waves, fluidic flow or turbu-
lences, and the movement of macromolecular
network. These are “structures” that cannot be
easily segmented, yet their movements may
have significant biological implications; appli-
cation of novel mathematics and algorithms
would be required before their movements
could be measured. (iii) The present practice of
treating image acquisition and data analysis as
distinct, independent steps may soon no longer
be a practical option. In fact, it is of utmost
importance to unite microscope design, image
file architecture, metadata standardization, and
computational techniques into a seamlessly in-
tegrated strategy (Amat et al., 2014).

The pace of image data generation has thus
far exceeded the development of analytical al-
gorithms and the processing capabilities of
most labs. The complexity of biological in-
formation will also limit how widely applica-
ble many of the newly developed algorithms
could be, given that they are usually driven
by focused hypotheses and labeling of spe-
cific biostructures. This challenge therefore
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highlights the importance of adaptive data
analysis and of the use of machine-learning
approaches. The interdisciplinary dialogue
between biologists and data scientists is still
lagging in regard to how to turn seemingly
complex biological questions into tractable an-
alytical problems. Future development of so-
phisticated tracking algorithms, especially if
human supervision is to be minimized, will
require biologists to be proficient enough in
the basic principles of image analysis to ar-
ticulate the questions in unambiguous and
non-anecdotal terms. Even machine learning
methods will inevitably require the informed
optimization of parameters based on a priori
knowledge to successfully execute computa-
tional image analysis.
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